DC 1010 / 1020 1030 / 1040

DIGITAL CONTROLLER PRODUCT MANUAL

51-52-25-113
06/02

Before using this manual, please check to ensure the Model number, input type Range and output match your requirements.

1. Front Panel Overview

1.1 Display

PV : Process Value, 4-digit display (Color Red)
SP : Set Point, 4-digit display (Color Green)
1.2 LED Indicators

OUT1 : Output 1, color green
OUT2 : Output 2, color green
AT : Auto-Tuning, color yellow
PRO : Program, color yellow
AL1 : Alarm 1, color red
AL2 : Alarm 2, color red
MAN : Manual, color yellow
1.3 Keys

SET : MODE \& SET key
\ll : SHIFT key
∇ : DOWN key
\triangle : UP key
A/M : Auto/Manual key

2. Auto Tuning

2.1 When AT is set to 'YES', auto tuning can be initiated.
2.2 After completion of auto tuning, the PID parameter are automatically Entered into memory.
2.3 ATVL = auto tuning offset, the off set value when entered will be calculated and subtracted from the SP.
(It prevents over-shooting during auto tuning)
SP-ATVL = Auto-tuning value, ATVL = Auto tuning offset
Ex.) $S P=200^{\circ} \mathrm{C}, \mathrm{ATVL}=5$, Auto tuning point is at $195^{\circ} \mathrm{C}$

* ATVL means auto-tuning point ($195^{\circ} \mathrm{C}$) in the above example.
2.4 Auto tuning failure
2.4.1 ATVL is too large. \rightarrow If unsure, set ATVL $=0$)
2.4.2 Process lag is to long for Auto Tune to function correctly. \rightarrow Set PID parameter manually.

3．Error Information

ı ロ 汇	Open circuit sensor input 1
＊回口Г	A／D converter failed
＊［ \dagger ¢巨	Cold junction compensation failed
1 ロ己E	Open circuit of sensor input 2
$\bigsqcup \bigsqcup \bigsqcup$	PV exceeds USPL
$\square \square \square$	PV under LSPL
ப	Input 2 signal has exceeded the upper limit
ロாா己	Input 2 signal has exceeded the lower limit
＊「	RAM failed
। ロЕF	Interface failed
口படF	Auto tuning failed

Note）Error＊code indicates critical failure unit must be replaced．

4. Operating Flow

4.1 Level 1

Display PV
Display SP

Output

Alarm 1 Set

Alarm 2 Set

Alarm 3 Set

4.1.1 Press the SHIFT key $(<)$ to change the parameters, when the SHIFT key is pressed, the first digit will start to blink. Press UP key (\triangle) or DOWN key (∇) to increase or decrease the value of the digit, then press SHIFT key again to go to the next digit, repeat the above procedure until the required has been selected. Press the SET key to enter the desired value.
4.1.2 The SET key also has the function of changing MODEs. If SET key is pressed, the display shows the next MODE.
4.1.3 Press SET key for 5 sec . The display goes to level 2, press the SET key again to return to level 1.
4.1.4 If any key is not pressed for 1 minute the display will return to level 1.
4.1.5 If the A/M key is pressed the controller will switch to level 1.
4.1.6 If the output percentage is " 0 ", the controller output is off.
4.2 Level 2

4.3 Level 3

When LCK=0000, press the SET key and SHIFT key for 5 seconds to enter level 3.

Main Control
Input Selection

Main Control
Analog Zero set

Main Control
Analog Span set

Decimal point

Lower Set-point limit

Upper Set-point limit

Sub Control
Analog Zero set

Sub Control
Analog Span set

Alarm mode of AL1

Time set of Alarm 1

Alarm mode of AL2

Time set of Alarm 2

Alarm mode of AL3

Time set of Alarm 3

Hysterisis of Alarm

Select the input range.
Refer to 5.1 Input selection on P.13~P. 14

Used as input code which are AN1 to AN5
Range: LSPL~USPL

Same as ANL1

To set the position of decimal point

To set the lowest point within INP1

To set the highest point within INP1

Used as input code which are AN1 to AN5
Range: LSPL~USPL

Same as ANL2

Range: 00~19
Refer to ‘6.1 Alarm Function Selection’ on P. 15

Used in program function (Range: 0~99.59 min.)
$0=$ switching, $99.59=$ continuous, others $=$ on delay time

Range: 00~19

Same as ALT 1

Range: 00~19

Same as ALT 1

Range: 0~1000

Main Control
Calibration

Main Control
Calibration high

Sub control
Calibration Iow

Sub Control
Calibration high

Transmitter control
Calibration Iow

Transmitter control
Calibration high

Timer for
Motor valve control

To use in program for
waiting continued operation

Relay Contact \&
Program RUN \& End ALM

ID number
(please skip this step)

Baud rate
(please skip this step)

Compensate SP

Compensate PV

Unit of PV \& SP

Soft filter
(please skip this step)

To calibrate the low value of output
Range: LSPL~USPL (Current output only)

To calibrate the high value of output
Range: 0~9999 (Current output only)

Same as CLO1

Same as CHO1

Same as CLO1

Same as CHO1

Full run time of proportional motor (without potentiometer)
Range: 5~200 sec
$0=$ No wait
Others = Wait time
$0=$ "a" contact, $1=$ " b " contact
SET A.4=0 RUN alarm, SET A.4=1 END alarm

Communication ID number

UART band rate selection
Range: 110~9600 BIT/sec

Range: -1000~1000

Range: LSPL~USPL

Range: C, F, A (analog)

Adjust the response time of PV (the bigger, the faster)
Range: 0.05~1.00

4.4 Level 4 (LOCK FUNCTION)

4.4.1 Functions of LCK

LCK $=0100$, To enter Level $1 \& 2$ and to change their parameters allowed.
LCK=0110, To enter Level $1 \& 2$ and to change the parameters on Level 1 allowed.
LCK=0001, To enter Level 1 only and to change SP allowed.
LCK $=0000$, To enter Level 3 allowed then press SET + SHIFT key
LCK=1111, To enter Level 4 allowed then press SET + SHIFT key
LCK=0101, Nothing allowed except to change LCK.
4.4.2 Let the display go to "LCK" in level 2, and set " 1111 " in LCK, then press SET key and SHIFT key $(<)$ for 5 seconds to enter "SET" status. There are SET0.1 to SET9.4 for use.

4.4.3 Functions of SETs

SET	Function	SET	Function
1.1	OUTL	5.1	CLO2, CHO2
1.2	AT	5.2	CLO3, CHO3
1.3	AL1	5.3	Rucy, WAIT, HYSM
1.4	AL2	5.4	IDNO, BAUD
2.1	AL3	6.1	SVOS
2.2	ANL1, ANH1, DP	6.2	PVOS
2.3	LSPL, USPL	6.3	UNIT
2.4	ANL2, ANH2	6.4	SOFT
3.1	ALD1	7.1	CASC
3.2	ALT1	7.2	OUD
3.3	ALD2	7.3	OPAD
3.4	ALT2	7.4	Hz
4.1	ALD3		
4.2	ALT3		
4.3	HYSA		
4.4	CLO1, CH01		

SET	Function	Remarks
8.1	$0=$ No Repeat	
	$1=$ Program Repeat	
8.2	$0=$ No Power Failure	
	$1=$ With Power Failure	
8.3	$0=$ Start from 0	Auxiliary Output Use
	$1=$ Start from PV	
9.3	TRS SP	
9.4	TRS PV	
0.3	$0=$ No Remote SP	
	$1=$ Remote SP	

* Caution: Please don't operate SET8.4, otherwise the process of the controller will be in confusion.

4.5 Program Level

4.5.1 This program has 2 patterns, each pattern contains 8 segments. The segment can be arranged a period of RAMP status or SOAK status.

4.5.2 Terminologies

Pattern : A program consists of some segments
Step : A RAMP status + a SOAK status
RAMP status : The status with changing SP
SOAK status : The status with fixed SP

4.5.3 Operating

1) Key functions (No changing parameters)

\triangle (START)	: To start program procedure, PRO in panel flicker
∇ (WAIT)	: To suspend program procedure, PRO in panel will
	stop flicker but light
$\triangle+$ SET (JUMP)	: To jump segment
$\nabla+$ SET (RESET)	$:$ To reset program procedure, PRO in panel will be
	"off"

2) Alarm function

If ALD1 to be set 07 (* refer to the selection),
AL1 to be set 2 ($\mathrm{AL1}=2$, it means alarm in segment 2 end),
ALT1 to be set 00.10 (alarm time 10 sec .).
*In this case, when program proceeds to segment 2 end, ALM1 relay will be on 10 sec .
3) End function

If ALD to be set 17 (* refer to the selection), this program will be end in segment 8 or 16.

* In this case, PV and END will flicker in display window, and the alarm relay acts.
This controller does not have END order if program procedure are less than 8 segments. In this case, please set next segment's out $=0$, then this program will be end in last set segment. Otherwise, it will proceed 8 or 16 segments.

4) Linking function

PTN=1, Proceed pattern1, which contains 8 segments
PTN=2, Proceed pattern2, which contains 8 segments
PTN=0, linking proceed pattern 1 and 2 ,totally 16 segments (Set PTN1 and PTN2 first, then set PTN=0)
5) Other function (*refer to level 4)

SET8.1=1 Program repeat
SET8.2=0 No power failure
SET8.2 $=1$ With power failure function
(If power suspended, the controller will keep the memory)
SET8.3=0 Program start from 0
SET8.3=1 Program start from PV

5．Input
5．1 Input selection（INP 1）

TYPE	CODE	RANGE	HEX
K	匕 I	$0.0 \sim 200.0^{\circ} \mathrm{C} / 0.0 \sim 392.0^{\circ} \mathrm{F}$	01H
	를	$0.0 \sim 400.0^{\circ} \mathrm{C} / 0.0 \sim 752.0^{\circ} \mathrm{F}$	02H
	－ヨ	$0.0 \sim 600.0^{\circ} \mathrm{C} / 0.0 \sim 1112.0^{\circ} \mathrm{F}$	03H
	니	$0.0 \sim 800.0^{\circ} \mathrm{C} / 0.0 \sim 1472.0^{\circ} \mathrm{F}$	04H
	¢5	$0.0 \sim 1000.0^{\circ} \mathrm{C} / 0.0 \sim 1832.0^{\circ} \mathrm{F}$	05H
	H6	$0.0 \sim 1200.0^{\circ} \mathrm{C} / 0.0 \sim 2192.0^{\circ} \mathrm{F}$	06H
J	」1	$0.0 \sim 200.0^{\circ} \mathrm{C} / 0.0 \sim 392.0^{\circ} \mathrm{F}$	07H
	」2	$0.0 \sim 400.0^{\circ} \mathrm{C} / 0.0 \sim 752.0^{\circ} \mathrm{F}$	08H
	」ヨ	$0.0 \sim 600.0^{\circ} \mathrm{C} / 0.0 \sim 1112.0^{\circ} \mathrm{F}$	09H
	ل－4	$0.0 \sim 800.0^{\circ} \mathrm{C} / 0.0 \sim 1472.0^{\circ} \mathrm{F}$	OAH
	ل	$0.0 \sim 1000.0^{\circ} \mathrm{C} / 0.0 \sim 1832.0^{\circ} \mathrm{F}$	OBH
	］	$0.0 \sim 1200.0^{\circ} \mathrm{C} / 0.0 \sim 2192.0^{\circ} \mathrm{F}$	OCH
R	г I	$0.0 \sim 1600.0^{\circ} \mathrm{C} / 0.0 \sim 2912.0^{\circ} \mathrm{F}$	ODH
	гᄅ	$0.0 \sim 1769.0^{\circ} \mathrm{C} / 0.0 \sim 3216.0^{\circ} \mathrm{F}$	OEH
S	51	$0.0 \sim 1600.0^{\circ} \mathrm{C} / 0.0 \sim 2912.0^{\circ} \mathrm{F}$	OFH
	ᄂコ	$0.0 \sim 1769.0^{\circ} \mathrm{C} / 0.0 \sim 3216.0^{\circ} \mathrm{F}$	10H
B	b1	$0.0 \sim 1820.0^{\circ} \mathrm{C} / 0.0 \sim 3308.0^{\circ} \mathrm{F}$	11H
E	E I	$0.0 \sim 800.0^{\circ} \mathrm{C} / 0.0 \sim 1472.0^{\circ} \mathrm{F}$	12H
	E2	$0.0 \sim 1000.0^{\circ} \mathrm{C} / 0.0 \sim 1832.0^{\circ} \mathrm{F}$	13H
N	$\square 1$	$0.0 \sim 1200.0^{\circ} \mathrm{C} / 0.0 \sim 2192.0^{\circ} \mathrm{F}$	14H
	пᄅ	$0.0 \sim 1300.0^{\circ} \mathrm{C} / 0.0 \sim 2372.0^{\circ} \mathrm{F}$	15H
T	ヒ I	－199．9～400．0 ${ }^{\circ} \mathrm{C} /-199.9 \sim 752.0^{\circ} \mathrm{F}$	16H
	ヒᄅ	$-199.9 \sim 200.0^{\circ} \mathrm{C} /-199.9 \sim 392.0^{\circ} \mathrm{F}$	17H
	ヒヨ	$0.0 \sim 350.0^{\circ} \mathrm{C} / 0.0 \sim 662.0^{\circ} \mathrm{F}$	18H
W	－ 1	$0.0 \sim 2000.0^{\circ} \mathrm{C} / 0.0 \sim 3632.0^{\circ} \mathrm{F}$	19H
	บᄅ	$0.0 \sim 2320.0^{\circ} \mathrm{C} / 0.0 \sim 2372.0^{\circ} \mathrm{F}$	1AH
PLII	PL I	$0.0 \sim 1300.0^{\circ} \mathrm{C} / 0.0 \sim 2372.0^{\circ} \mathrm{F}$	1BH
	PLコ	$0.0 \sim 1390.0^{\circ} \mathrm{C} / 0.0 \sim 2534.0^{\circ} \mathrm{F}$	1CH
U	ப1	－199．9～600．0 ${ }^{\circ} \mathrm{C} /-199.9 \sim 999.9^{\circ} \mathrm{F}$	1DH
	பᄅ	$-199.9 \sim 200.0^{\circ} \mathrm{C} /-199.9 \sim 392.0^{\circ} \mathrm{F}$	1EH
	$\sqcup \exists$	$0.0 \sim 400.0^{\circ} \mathrm{C} / 0.0 \sim 752.0^{\circ} \mathrm{F}$	1FH
L	LI	$0.0 \sim 400.0^{\circ} \mathrm{C} / 0.0 \sim 752.0^{\circ} \mathrm{F}$	20H
	Lᄅ	$0.0 \sim 800.0^{\circ} \mathrm{C} / 0.0 \sim 1472.0^{\circ} \mathrm{F}$	21H

[^0]| TYPE | CODE | RANGE | HEX |
| :---: | :---: | :---: | :---: |
| $\underset{\text { Pt100 }}{\text { JIS }}$ | 」P I | －199．9～600．0 ${ }^{\circ} \mathrm{C} /-199.9 \sim 999.9^{\circ} \mathrm{F}$ | 22H |
| | 」P2 | －199．9～400．0 ${ }^{\circ} \mathrm{C} /-199.9 \sim 752.0^{\circ} \mathrm{F}$ | 23H |
| | 」アヨ | －199．9～200．0 ${ }^{\circ} \mathrm{C} /-199.9 \sim 392.0^{\circ} \mathrm{F}$ | 24H |
| | JP4 | $0.0 \sim 200.0^{\circ} \mathrm{C} / 0.0 \sim 392.0^{\circ} \mathrm{F}$ | 25H |
| | JP5 | $0.0 \sim 400.0^{\circ} \mathrm{C} / 0.0 \sim 752.0^{\circ} \mathrm{F}$ | 26H |
| | 」PG | $0.0 \sim 600.0^{\circ} \mathrm{C} / 0.0 \sim 1112.0^{\circ} \mathrm{F}$ | 27H |
| $\begin{gathered} \text { DI N } \\ \text { Pt100 } \end{gathered}$ | －${ }^{\text {I }}$ | －199．9～600．0 ${ }^{\circ} \mathrm{C} /-199.9 \sim 999.9^{\circ} \mathrm{F}$ | 28H |
| | dP2 | －199．9～400．0 ${ }^{\circ} \mathrm{C} /-199.9 \sim 752.0^{\circ} \mathrm{F}$ | 29H |
| | －Pヨ | $-199.9 \sim 200.0^{\circ} \mathrm{C} /-199.9 \sim 392.0^{\circ} \mathrm{F}$ | 2AH |
| | $\mathrm{d}^{\text {P4 }}$ | 0．0～200．0 ${ }^{\circ} \mathrm{C} / 0.0 \sim 392.0^{\circ} \mathrm{F}$ | 2BH |
| | －${ }^{\text {P5 }}$ | $0.0 \sim 400.0^{\circ} \mathrm{C} / 0.0 \sim 752.0^{\circ} \mathrm{F}$ | 2CH |
| | －P6 | $0.0 \sim 600.0^{\circ} \mathrm{C} / 0.0 \sim 1112.0^{\circ} \mathrm{F}$ | 2DH |
| $\begin{aligned} & \text { JIS } \\ & \text { Pt50 } \end{aligned}$ | JP．I | $-199.9 \sim 600.0^{\circ} \mathrm{C} /-199.9 \sim 999.9^{\circ} \mathrm{F}$ | 2EH |
| | 」P．2 | －199．9～400．0 ${ }^{\circ} \mathrm{C} /-199.9 \sim 752.0^{\circ} \mathrm{F}$ | 2FH |
| | 」Pヨ | $-199.9 \sim 200.0^{\circ} \mathrm{C} /-199.9 \sim 392.0^{\circ} \mathrm{F}$ | 30H |
| | JP． | $0.0 \sim 200.0^{\circ} \mathrm{C} / 0.0 \sim 392.0^{\circ} \mathrm{F}$ | 31H |
| | ¢ | $0.0 \sim 400.0^{\circ} \mathrm{C} / 0.0 \sim 752.0^{\circ} \mathrm{F}$ | 32H |
| | JPG | $0.0 \sim 600.0^{\circ} \mathrm{C} / 0.0 \sim 1112.0^{\circ} \mathrm{F}$ | 33H |
| AN1 | 月п 1 | －10～10mV／－1999～9999 | 34H |
| AN2 | 月п2 | 0～10mV／－1999～9999 | 35H |
| AN3 | คпヨ | 0～20mV／－1999～9999 | 36H |
| AN4 | 月п니 | 0～50mV／－1999～9999 | 37H |
| AN5 | 7п5 | 10～50mV／－1999～9999 | 38H |

6. Alarm
6.1 Alarm function selection

CODE	DESCRIPTION	Hold-On
$\square \square / \mathrm{\square}$	None	
$\square 1$	Deviation high limit alarm	Yes
11	Deviation high limit alarm	No
\square ㄹ	Deviation low limit alarm	Yes
1巳	Deviation low limit alarm	No
$\square \exists$	Deviation high/low alarm	Yes
$1 \exists$	Deviation high/low alarm	No
\square 니/ 1	Deviation high/low range alarm	No
$\square 5$	Absolute value high limit alarm	Yes
15	Absolute value high limit alarm	No
$\square \square$	Absolute value low limit alarm	No
16	Absolute value low limit alarm	Yes
$\square 7$	Segment end alarm (use for program only)	-
17	Program run alarm (use for program only)	-
$\square \square$	System error alarm-on	-
旧	System error alarm-off	-
19	On delay timer alarm	-

* Note : "Hold-On" means the alarm does not work at the first time.
6.2 Alarm action description
6.1.1 CODE 00/10 : None
6.1.2 CODE 01 : Deviation high alarm inhibit

: SP
: Alarm set value
\triangle
6.2.3 CODE 11 : Deviation high alarm no inhibit

6.2.4 CODE02 : Deviation low alarm inhibit

6.2.5 CODE12 : Deviation low alarm no inhibit

6.2.6 CODE03 : High/low alarm inhibit

6.2.7 CODE13 : High/low alarm no inhibit

6.2.8 CODE04/14 : Band alarm

OFF	ON	OFF
LOW \triangle	$\Delta \mathrm{HIGH}$	

6.2.9 CODE05 : Absolute high alarm inhibit

6.2.10 CODE15 : Absolute high alarm no inhibit

6.2.11 CODE06 : Absolute low alarm inhibit

6.2.12 CODE16 : Absolute low alarm no inhibit

6.2.13 CODE07 : Segment end alarm (program only)
i) ALD 1~3, set 07
ii) AL1~3, alarm segment no. set
iii) ALT1~3, if set 0 = flicker alarm set $99.59=$ alarm continued
set others $=$ on delay time
6.2.14 CODE17 : Program run alarm (program only)

6.2.15 CODE08 : System Error- ON

6.2.16 CODE18 : System Error-OFF

6.2.17 CODE19 : on delay timer when PV=alarm SP, it keeps a certain period (set time) before alarm action (Range: 00H00M~99H59M)
7. Modification of HEAT/ALARM \rightarrow HEAT/COOL (on PC board)
7.1 DC1010

7.2 DC1030

$7.3 D$ DC1020/1040

8. Special Function Description

8.1 Level set

8.1.1 Second input mode

INP $2=0$, Non
INP $2=1,1 \sim 5 \mathrm{~V} / 4 \sim 20 \mathrm{~mA} / 2 \sim 10 \mathrm{~V}$
INP $2=2,0 \sim 5 \mathrm{~V} / 0 \sim 20 \mathrm{~mA} / 0 \sim 10 \mathrm{~V}$
8.1.2 Output mode

OUTY $=0$, Single output
OUTY $=1$, Double output
OUTY $=2$, Non
OUTY $=3$, Motor Postion Control
OUTY $=4$, Single phase SCR (Single phase control)
OUTY $=5$, Three phase SCR (Three phase control)
8.2 Ramp \& Soak
8.2.1 RAMP
i) Set "SET2.1= 1", "SET4.1= 1" at Set level
ii) Set "ALD 3 = 9" at Input level
iii) Then, "AL 3" menu will not be displayed

8.2.2 SOAK
i) $\mathrm{ALD} 1 / \mathrm{ALD} 2=19$
ii) Then, AL1/AL2 will be displayed

Example)
$\mathrm{SP}=100^{\circ} \mathrm{C}, \mathrm{RAMP}=10.00^{\circ} \mathrm{C} /$ minute
Time(minute) $=10$ minute $\rightarrow \mathrm{ALI}=00.10$
$P V=25^{\circ} \mathrm{C}$

8.3 Remote SP
8.3.1 Hardware must be mounted
8.3.2 Set 'INP2' to 1 or 2 (ANL2, ANH2 used for Cal.)
8.3.3 SET $0.3=1$ means Remote SP from Input 2 channel (*SET $0.3=0$ means Local SP)
8.4 Alarm Timer ALT1/ALT2/ALT3 description
8.4.1 ALT $1=0$ means Switching if AL 1 is ON
8.4.2 ALT $1=99.59$ means 'continuous alarm' if AL 1 is ON
8.4.3 ALT $1=00.01 \sim 99.58$ means AL 1 is on delay timer
8.5 Function SET A

If SET A. $1=1$ set, AL1 relay reversed
If SET A. $2=1$ set, AL2 relay reversed If SET A. $3=1$ set, AL3 relay reversed

DC1010 is not available 'a' contact only

If SET A. $4=0$ set, program run alarm If SET A. $4=1$ set, program end alarm
8.6 Function SET 8
8.6.1 SET $8.1=0 \quad$ Non

SET $8.1=1 \quad$ Program Repeat
8.6.2 SET $8.2=0 \quad$ Non (program model only)

SET $8.2=1 \quad$ Power failure access
8.6.3 SET $8.3=0 \quad$ Zero start (program model only)

SET $8.3=1 \quad$ PV start
8.6.4 SET $8.4=0 \quad$ Non

SET $8.4=1 \quad$ Display will be transferred to single display.
(Don't change this digit)

* SET 8 = 0000 can make return to double display
8.7 Function SET 9
8.7.1 SET 9.1 = 0 Non

SET $9.1=1 \quad$ PV/SP switching

* This is for the single display set (refer to SET 8.4)
8.7.2 SET 9.2 = 0 Non

SET $9.2=1 \quad$ Non Program model : No display RAMP
Program model : Timer change from H.M to M.S
8.7.3 SET $9.3=0 \quad$ Non

SET $9.3=1 \quad$ Transmission SP
8.7.4 SET $9.4=0 \quad$ Non

SET $9.4=1 \quad$ Transmission PV
8.8 Function SET 0
8.8.1 SET $0.1=0 \quad$ Non

SET $0.1=1 \quad$ Non (function not available for DC1010/1020/1030/1040)
8.8.2 SET $0.2=0 \quad$ Non

SET $0.2=1 \quad$ Rate for AL3 (ALD $3=0$)
8.8.3 SET $0.3=0 \quad$ Non

SET $0.3=1 \quad$ Remote SP
8.8.4 SET $0.4=0 \quad$ Motor valve close $=$ "b" out (contact normally close)

SET $0.4=1 \quad$ Motor valve close $=" a "$ out (contact normally open)
8.9 Input level wait

Wait $=0$ means "no wait". When used as a programmer, i the
Wait $\neq 0$ means "wait"
8.10 Cycle Time

Range: 0~150 sec
$\mathrm{CYT}=0$ (i) mA
(ii) Phase control(SCR)
$\mathrm{CYT1}=1 \quad$ (i) SSR
(ii) Phase zero control(SCR)

CYT1 $=$ over $10 \quad$ Relay output.

Application 1. Single Phase Control, Phase angle control
-. Avalable models: DC1030/1040, DC1030P/1040P
-. Data Change:
OUTY $=4$
$\mathrm{CYT}=0$
CL01 $=0, \mathrm{CH} 01=5000$ if used for resistance load CLO1 $=0$, CH01 $=4000$ if used for inductor load

Application 2. Three Phase Control, Phase angle control
-. Available Models: DC1040/DC1040P
-. Data Change :

$$
\text { OUTY }=5
$$

$$
\mathrm{CYT}=0
$$

CLO1 $=0$, CH01 $=5000$ only if used for resistance load

3ϕ LOAD

Application 3. Single Phase Zero crossover Control
-. Available Models: DC1030/1040 DC1030P/1040P
-. Data Change:

$$
\begin{aligned}
& \text { OUTY }=0 \\
& \text { CYT1 }=1
\end{aligned}
$$

TIME CHART:

CYCLE TIME = 200 mSEC.

Application 4. Three Phase Zero crossover Control
-. Available Models: DC1040/1040P
-. Data Change:

$$
\begin{aligned}
& \text { OUTY }=0 \\
& \text { CYT1 }=1
\end{aligned}
$$

TIME CHART:

Application 5. Motor Valve Control
-. Available Models: DC1020/1030/1040
DC1020P/1030P/1040P
-. Data Change: OUTY $=3$

$$
\begin{aligned}
& \text { CYT1 }=1 \sim 100 \mathrm{sec} . \text { (Normally, set } 5 \text { sec.) } \\
& \text { RUCY }=5 \sim 200 \mathrm{sec} .
\end{aligned}
$$

* 1. CYT1 is the cycle time of Open/Close

2. RUCY is the running time of motor valve $0 \sim 100 \%$

MOTOR VALVE

Application 6. Single Phase Control (for TRIAC module)
-. Available Models: DC1030/1040 DC1030P/1040P
-. Data Change: \quad OUTY $=4$ CLO1 $=0 . \mathrm{CHO1}=5000$ if use for resistance load CLO1=0.CHO1=4000 if use for inductor load

** Controller source phase must be same as load source phase

[^0]: ＊The initial set in factory mode is K 2 without any certain requirement．

